摘要
Traditional aluminum alloys are unsuitable for structural use above 200 celcius due to precipitate coarsening or dissolution. Laser powder bed fusion (LPBF) additive manufacturing technique enables fabricating novel aluminum alloys with enhanced high-temperature properties. This study focuses on investigating the mechanical properties and microstructural evolution of a novel LPBF-fabricated Al-Cu-Li-Sc-Zr alloy at elevated temperatures. The microstructure is characterized by nano-scale grains and precipitates. Excellent grain structure and precipitate stability result in superior high-temperature mechanical properties. This study advances additively manufactured aluminum alloy design for potential high-temperature applications, offering valuable insights into their behavior in extreme environments.{GRAPHICAL ABSTRACT}
-
单位西北工业大学; 华中科技大学