摘要
In this paper, the X-ray micro-computed tomography (X-ray mu CT), spherical harmonical-based principal component analysis (SH-PCA), and discrete element method (DEM) were incorporated to generate virtual samples with morphological gene mutation at different length scales. All samples were subjected to axial compression and constant confining stress. The effects of multiscale particle morphology on the stress-strain and energy storage/dissipation responses of granular soils were investigated. It is found that: (a) the effects of particle morphology on the initial stiffness, stress-strain, volumetric strain, and frictional energy dissipation behaviours are more pronounced for looser samples than for denser ones; (b) among different length scales, the particle morphology at the local roundness-level outperforms the one at the general