摘要

Organosilane, with functional organic groups attached to inorganic silicon atoms, exhibits excellent passivation performance for pyrite. However, a considerable number of micro-cracks will gradually appear on the surface of passivation film under long-term corrosion of oxidizing medium, resulting in a significant decrease of passivation effect. To improve the stability and long-term performance of organosilane coating, a novel passivator (PTATP@HQ) with self-healing function was prepared to inhibit the oxidation of pyrite. We chose 3-mercaptopropyltrimethoxysilane (Prop-SH) and tetraethoxysilane (TEOS) as the host coating (PT), and attapulgite clay (ATP) loaded with 8-hydroxyquinoline (8-HQ) was used to endow the coating with better passivation and self-healing performance. The electrochemical and chemical leaching results showed that the addition of ATP@HQ greatly improved the passivation performance of PT coating. The passivation efficiencies of total Fe and SO(4)(2-)reached to 88.1% and 79.2%, respectively. We also found that the protective capability of the scratched PT-ATP@HQ coating can be recovered automatically through 8-HQ release from ATP. The passivation and self-healing mechanisms were investigated by FT-IR, XPS, Si-29 NMR, and other characterization methods, which were as follows: firstly, the organosilanes hydrolyzed to form highly active silanol groups, then dehydration condensation reaction occurred between silanol molecules and ATP@HQ to obtain cross-linked network structure connected by Si-O-Si bonds. After that, Si-OH groups reacted with the hydroxyl groups of pyrite to form Fe-O-Si bonds, thereby an inert and dense passivation film attached to the surface of pyrite. Once the passivation film is locally damaged, 8-HQ will automatically release to repair the cracks.