摘要

该文对三种不同的分词词性标注模型进行了比较。这三种模型分别为一个序列标注串行模型,一个基于字分类的联合模型和一个将这两种模型使用Stacked Learning框架进行集成的融合模型。通过在《人民日报》、CoNLL09、CTB5.0和CTB7.0四个数据集上进行比较分析,最终实验结果表明分类联合模型能取得比较好的速度,融合模型能取得比较好的准确率,而普通串行模型处于速度和准确率的平衡位置。最后该文将准确率最好的融合模型和相关前沿工作在CTB5.0和CTB7.0上进行了对比,该融合模型均取得了最好的结果。

  • 单位
    哈尔滨工业大学