摘要

In this study, the effects of chemical composition and process routes on the microstructure and mechanical properties of high-Zn-content Al-Zn-Mg-Sc alloys were investigated. Aging led to the formation of nano-sized Zn phases in the grain interior and large Zn phases at the grain boundary (GB) or Al/Al3Sc interfaces in the Al-20Zn-0.5Mg-0.5Sc (20Zn-0.5Mg) alloy, and cold rolling before aging (Pre-CR) could accelerate this precipitation. Compared with the 20Zn-0.5Mg alloy, the Al-15Zn-1Mg-0.5Sc (15Zn-1Mg) alloy exhibited a more difficult Zn phase precipitation during aging, and only pre-CR could lead to the formation of intracrystalline Zn phases in this alloy during artificial aging. The transition of the eta ' phases into eta phases without coarsening of Zn phases occurred at the GB or Al/Al3Sc interfaces of the 15Zn-1Mg alloy during artificial aging. Pre-CR could improve the mechanical properties of high-Zn-content Al-Zn-Mg-Sc alloys, and the significant evolution of Zn phases in the 20Zn-0.5Mg alloy during processing in different routes conferred this alloy a wider range of mechanical properties than the 15Zn-1Mg alloy.

  • 单位
    桂林理工大学

全文