基于NSCT域边缘检测的侧扫声呐图像分割新方法
中国知网
河海大学
摘要
针对侧扫声呐图像混响噪声严重、对比度低、分割困难的问题,根据侧扫声呐图像成像特点,提出一种基于非下采样Contourlet变换(NSCT)域边缘检测和区域生长的侧扫声呐图像分割新方法。首先,对侧扫声呐图像进行NSCT分解,通过K均值聚类法在NSCT域低频部分对阴影进行分割;然后通过寻找NSCT域高频层由同一粗尺度分解的2个细尺度相邻子带系数差的模极大值位置,来选择图像边缘点,并进行尺度内、尺度间的边缘融合;最后,利用基于边缘的区域生长方法完成对目标的分割。实验结果表明,该方法对侧扫声呐图像分割具有抗噪性能好、正确分类率高以及边缘定位准确等优点。
关键词
侧扫声呐图像 图像分割 非下采样Contourlet变换 边缘检测 区域生长 side-scan sonar image image segmentation nonsubsample contourlet transform(NSCT) edge detection region growing
