摘要

K2DPCA(kernel 2D principal component analysis)是基于非线性特征提取的重要人脸识别方法,具有成功的应用.但对大规模训练数据库,其因核矩阵K规模过大、计算代价高而不能有效实现.采用选主元Cholesky,分解方法,仅需计算核矩阵的对角线上元素和部分精选列,得到迹范数意义下核矩阵K的最优Nystr(o|¨)m型低秩近似LL~T来解决该问题.并只需计算小规模矩阵L~TL的特征值和特征向量,实现大规模K2DPCA/KPCA(kernel principal component anialysis)的非线性特征提取.在加噪ORL人脸数据库上的实验结果表明,较K...

  • 单位
    西安电子科技大学