摘要

Installing the Edinburgh Duck Wave Energy Converter (ED WEC) on a floating breakwater provides a potential solution to reduce costs and improve the reliability of the ED WEC. To investigate the interactions between the ED WEC and the breakwater, a two-dimensional numerical model of a hybrid WEC-breakwater system is established based on Star-CCM+ Computational Fluid Dynamics (CFD) software. The wave energy extraction performance, wave attenuation performance, and wave forces on the breakwater of the hybrid system are compared with those of the corresponding single device. The effects of the initial attack angle, the distance between the WEC and the breakwater, and the incident wave height on the pitch motion, energy conversion efficiency, transmission coefficient, and wave forces on the breakwater of the hybrid system are analyzed. The results indicate that combing the ED WEC with a breakwater can improve the energy extraction performance of the ED WEC and reduce the wave forces on the breakwater in shorter-period waves. The conversion efficiency of the hybrid system with the initial attack angle of 42 degrees is the largest in shorter-period waves, but is reduced with the increase of initial attack angle in longer-period waves. The wave attenuation performance of the hybrid system is determined by the draft of the breakwater. The distance between the WEC and the breakwater has little effect on the hybrid system. Wave energy extraction of the ED WEC of the hybrid system decreases significantly with the increase of the incident wave height.

  • 单位
    哈尔滨工程大学

全文