摘要

Let {X, Xn; n >= 0} be a sequence of independent and identically distributed random variables in a sub-linear expectation space (ohm, H,(E) over cap). We establish Baum-Katz-type complete and complete moment convergence theorems for the maximum of partial sums in a sub-linear expectation space. Our results extend the corresponding complete convergence results of probability spaces to sub-linear expectation spaces.

  • 单位
    桂林理工大学