ScholarMate
客服热线:400-1616-289

Learning From Web Recipe-Image Pairs for Food Recognition: Problem, Baselines and Performance

Zhu, Bin*; Ngo, Chong-Wah; Chan, Wing-Kwong
Science Citation Index Expanded
-

摘要

Cross-modal recipe retrieval has recently been explored for food recognition and understanding. Text-rich recipe provides not only visual content information (e.g., ingredients, dish presentation) but also procedure of food preparation (cutting and cooking styles). The paired data is leveraged to train deep models to retrieve recipes for food images. Most recipes on the Web include sample pictures as the references. The paired multimedia data is not noise-free, due to errors such as pairing of images containing partially prepared dishes with recipes. The content of recipes and food images are not always consistent due to free-style writing and preparation of food in different environments. As a consequence, the effectiveness of learning cross-modal deep models from such noisy web data is questionable. This paper conducts an empirical study to provide insights whether the features learnt with noisy pair data are resilient and could capture the modality correspondence between visual and text.

关键词

Image recognition Training Generative adversarial networks Feature extraction Visualization Data models Context modeling Food recognition image-to-recipe retrieval image-to-image retrieval