A nanofiber with a p-t conjugated structure designed based on the Jahn-Teller effect for the removal of cupric tartrate from wastewater
摘要
Copper organic complexes with strong chemical stability and high solubility in water are difficult to eliminate with traditional adsorbents. In this work, a novel amidoxime nanofiber (AO-Nanofiber) with the p-t conjugated structure was fabricated through homogeneous chemical grafting coupled with electrospinning and applied to capture cupric tartrate (Cu-TA) from aqueous solutions. The adsorption capacity of Cu-TA by AO-Nanofiber was 198.4 mg/g at an equilibrium time of 40 min, and the adsorption performance remains basically unchanged after 10 times adsorption-desorption cycles. The capture mechanism of Cu-TA by AO-Nanofiber was jointly validated by experiments and characterization such as Fourier Transform Infrared Spectrometer (FT-IR), X-ray Photo-electron Spectroscopy (XPS), and Density functional theory (DFT) calculations. These results demonstrated that the lone pair of electrons of the N atom from the amino groups and the O atom from hydroxyl groups in the AO-Nanofiber is partially transferred to the 3d orbital of the Cu(II) ions in Cu-TA, leading to the Jahn-Teller distortion of the Cu-TA and the more stable structure of AO-Nanofiber@Cu-TA was generated.
