Summary
Lignin has been demonstrated to be green and effective for the modification of ZnO-based materials. In this work, quaternized lignin/zinc oxide nanostructured hybrid composites (QLS/ZnO NCs) were synthesized with good dispersion and uniform particle size via a facile hydrothermal method. Sodium lignosulfonate (LS) was modified by quaternization to endow the positive charges, which effectively captured bacteria due to the electrostatic interactions. Interestingly, QLS/ZnO NCs show a litchi-like morphology consisting of nanorods with diameters of 5?10 nm, which further resulted in damage to the bacterial cell membrane. Owing to the surface charge and rough surface topology for bacterial capture, QLS/ZnO NCs exhibited greatly enhanced antibacterial activity compared with bare ZnO. After being treated with QLS/ ZnO NCs for 90 min, the sterilization rates of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) reached 97.54% and 99.55%, respectively. Due to the reactive oxygen species (ROS) produced by ZnO under light irradiation, the antibacterial activity of QLS/ZnO NCs could be further enhanced. In addition, the minimal inhibition concentrations (MICs) of QLS/ZnO NCs towards E. coli and S. aureus were both 100 lg/mL, and the minimum bactericidal concentrations (MBCs) were 100 lg/mL and 200 lg/mL, respectively. Moreover, with the incorporation of QLS/ZnO NCs into polyurethane films, the composite & nbsp;films showed excellent antibacterial activity, strong tensile strength and enhanced ultraviolet light blocking performance.
-
Institution广东工业大学