摘要
Cullin 3 (CUL3), a member of Cullin-RING ubiquitin ligase family, regulates multiple intracellular path-ways. CUL3 expression in peripheral immune cells is highly associated with the development of stroke, while little is known about the mechanism of how CUL3 participates in cerebral ischemia/reperfusion (I/R) injury. In this study, we showed that CUL3 was obviously upregulated in brain tissues of male rats received middle cerebral artery occlusion (MCAO) and reperfusion and oxygen-glucose deprivation/reoxygenation (OGD/R)-induced neu-rons. We firstly confirmed that CUL3 interacted with WNK3, a protein that has been proved to be associated with brain damage after ischemic stroke. CUL3 knockdown inhibited the ubiquitination of WNK3 and accelerated the phosphorylation of OSR1 in OGD/R-stimulated neurons. CUL3 silencing did not further aggravate cerebral I/R injury and played a neuroprotective role in vitro and in vivo. CUL3 knockdown attenuated the impairment of cell viability caused by OGD/R. CUL3 silencing reduced TUNEL-positive cells, down-regulated pro-apoptotic factor (Bax and Cleaved caspase 3) levels and increased the anti-apoptotic factor (Bcl-2) level in vitro and in vivo, sug-gesting that CUL3 repression alleviated neuronal apoptosis. Interestingly, rescue experiments revealed that WNK3 downregulation did not block the neuroprotection of CUL3 inhibition. These findings suggested that CUL3-mediated cerebral I/R injury might be not achieved through WNK3 signaling but other pathways. Further-more, CUL3 inhibition suppressed ubiquitin-mediated degradation of Nrf2 and activated Nrf2 signaling by increas-ing the nuclear translocation of Nrf2 and expression levels of HO-1 and NQO-1. Taken together, CUL3 exacerbates cerebral I/R injury potentially due to its negative regulation of Nrf2 activation.
-
单位1; 哈尔滨医科大学