摘要
The ecological environment and public safety are seriously threatened by the typical phenolic contaminant hydroquinone (HQ). Here, using a straightforward physical mixing technique, we created an n-n heterojunction by uniformly immobilizing cadmium sulfide (CdS) nanoparticles on the surface of a three-dimensionally layered, flower-like structure made of tin sulfide (SnS2). Then, as photosensitizers, carbon nanotubes (CNTs) were added to the CdS/SnS2 complex to create a type-II heterostructure of CdS/SnS2/CNTs with synergistic effects. Subsequently, the detector HQ was bound to the modified photoelectrodes, which was accompanied by the hole oxidation of the bound HQ, leading to a significant increase in the photocurrent signal, thus allowing specific and sensitive detection of HQ. Under optimized detection conditions, the proposed photoelectrochemical sensor shows a wide detection range of 0.2 to 100 lM for HQ with a detection limit as low as 0.1 lM. The high accuracy of the sensor was demonstrated by comparison with the detection results of UV-vis spectrophotometry. In addition, the photoelectrochemical sensor exhibits good reproducibility, stability, selectivity, and specificity, providing a light-driven method to detect HQ.
-
单位湘潭大学