摘要
In this study, the effects of applied pressure (AP) and residual heat quenching (RQ) on the mechanical properties and thermal conductivities of Al-4.6Mg-3.6Zn-0.86Mn-0.48Fe alloys were investigated based on intensively microstructure analysis by scanning electron microscope (SEM), high resolution transmission electron microscopy (HRTEM) and synchrotron X-ray tomography (SXT). The results indicated that AP and RQ did not change the type of intermetallic; instead, they reduced the length and quantity of lath-like Al6(Fe,Mn) and significantly refined the grain by increasing the cooling rate. Moreover, eta ' precipitation particles were enriched near the grain boundaries, which was beneficial for the yield strength of the alloy; the AP + RQ sample exhibited the best mechanical properties of the ultimate tensile strength, yield strength and elongation of 269 MPa, 164 MPa and 11.4 %, respectively, which were 19 %, 17 %, and 83.8 % higher than those of the gravity cast (GC) sample. Moreover, the thermal conductivity of the AP + RQ sample did not show significant changes, which were attributed to the reduction in solid solute caused by the increased volume fraction of eta ' precipitates, thus improving the thermal conductivity; however, the formation of numerous semi-coherent interfaces between eta ' and the matrix led to increased lattice distortion, resulting in electron scattering.
-
单位东莞理工学院