Summary
In this study, the textural and rheological properties of arachin and basil seed gum composite gels (ABG) were successfully regulated by the addition of sodium chloride (NaCl) and transglutaminase (TGase). The texture profile analysis (TPA) results showed that the hardness and springiness of the ABG were significantly enhanced by adding TGase (p < 0.05). Particularly, the composite gel added with NaCl first and subsequently crosslinked by TGase (ABG-Na+-TG) showed a higher hardness value of 186.0 +/- 6.1 g. ABG-Na+-TG showed a higher amplitude of strain with lower compliance in the creep and recovery test and exhibited a better elastic behavior. These composite gels were employed as new delivery systems to encapsulate and deliver vitamin D-3 (VD3). ABG-Na+-TG showed a higher VD3 encapsulation efficiency of 91.7 % and a better protection of VD3 under different temperatures or UV light, as well as an improved storage stability of VD3. Furthermore, the release of VD3 in the simulated gastric digestion could be controlled by ABG-Na+-TG and the bioaccessibility after digestion was 32.9 %. These results suggest that ABG-Na+-TG can be utilized as a promising delivery system of VD3.