Summary
Black soldier fly, Hermetia illucens L. (Diptera: Stratiomyidae) larvae (BSF larvae or BSFL) offer an environmentalfriendly method for degrading antibiotics, such as tylosin (TYL) and enrofloxacin (EF), in swine manure. This study examined the impact of temperature on this process, role of associated microbes, dynamics of resistant genes, and a description of the microbial community associated with the BSF larval gut, how microbes isolated from the BSF larval gut as inoculants impact the process as well as enhance antibiotic digestion, and finally a quantification of antibiotics in BSF larvae fed manure with TYL or EF. Antibiotic degradation in manure was optimized at 28 degrees C with at least 10% greater than 23 degrees C and 37 degrees C. More than 40% reduction in TYL and EF concentrations in the manure occurred when BSF larval gut associated microbes were present. Furthermore, DNA extracted from the gut of non-sterile BSF larvae fed manure with TYL or EF indicated at least two 2-ooCt fold increase in antibiotic resistance genes for TYL and EF. We identified 250, 4, and 16 unique operational taxa for larvae fed control manure and manure with either TYL or EF. Intestinal microbes isolated from non-sterile larvae fed manure with TYL or EF, were identified, cultured, and examined for their ability to degrade TYL and EF in Luria-Bertani (LB) medium. Three strains (two strains of Enterococcus faecalis and one strain of Proteus mirabilis) resulted in at least 50% TYL or EF degradation within 96 h. Sterile BSF larvae inoculated with P. mirabilis recovered >60% of the degradation ability exhibited by non-sterile larvae. Finally, no TYL residuals were found in 14-d-old larvae, prepupae, or pupae of BSF immatures fed manure containing these antibiotics. While -65 mu g/ g and -20 mu g/g of EF were found in larval contents and pupal exoskeleton, respectively.
-
Institution广东省农业科学院; 华南农业大学