ScholarMate
客服热线:400-1616-289

Wood-Derived Freestanding Carbon-Based Electrode with Hierarchical Structure for Industrial-Level Hydrogen Production

Li, Di; Cheng, Hao; Hao, Xixun; Yu, Guoping; Qiu, Chuntian; Xiao, Yanjun; Huang, Hubiao; Lu, Yingying*; Zhang, Bing*
Science Citation Index Expanded
浙江大学; 1

摘要

The sustainable and scalable fabrication of low-cost, efficient, and durable electrocatalysts that operate well at industrial-level current density is urgently needed for large-scale implementation of the water splitting to produce hydrogen. In this work, an integrated carbon electrode is constructed by encapsulating Ni nanoparticles within N-doped carbonized wood framework (Ni@NCW). Such integrated electrode with hierarchically porous structure facilitates mass transfer process for hydrogen evolution reaction (HER). Ni@NCW electrode can be employed directly as a robust electrocatalyst for HER, which affords the industrial-level current density of 1000 mA cm-2 at low overpotential of 401 mV. The freestanding binder-free electrode exhibits extraordinary stability for 100 h. An anion exchange membrane water electrolysis (AEMWE) electrolyzer assembled with such freestanding carbon electrode requires only a lower cell voltage of 2.43 V to achieve ampere-level current of 4.0 A for hydrogen production without significant performance degradation. These advantages reveal the great potential of this strategy in designing cost-effective freestanding electrode with monometallic, bimetallic, or trimetallic species based on abundant natural wood resources for water splitting. @@@ The naturally wood material is transformed into a freestanding carbon electrode by encapsulating the Ni nanoparticles within the N-doped carbonized wood. Such freestanding carbon electrode exhibits excellent electrocatalytic performance in an anion exchange membrane water electrolysis (AEMWE) electrolyzer for industrial-level hydrogen production.image

关键词

electrocatalysts hierarchical structures hydrogen production wood material