摘要

基于神经网络的入侵检测方法是入侵检测技术的一个重要发展方向.在已有无监督生长型分层自组织映射(growing hierarchical self-organizing maps,GHSOM)神经网络算法的基础上,提出了一种半监督GHSOM算法.该算法利用少量有标签的数据指导大规模无标签数据的聚类过程.一方面借鉴cop-kmeans半监督机制,解决了原始算法中返回空划分的问题,并将其应用到GHSOM算法中.另一方面提出了神经元信息熵的概念作为子网生长的判断条件,提高了GHSOM网络子网划分的精度.此外还利用有标签的数据自动确定聚类结果的入侵类型.对KDD Cup 1999数据集和LAN环境下模拟产生的数据集进行的入侵检测实验表明:相比于无监督的GHSOM算法,半监督的GHSOM算法对各种类型的攻击具有较高的检测率.

  • 单位
    北京大学