ScholarMate
客服热线:400-1616-289

The mechanics of DNA loops bridged by proteins unveiled by single-molecule experiments

Catherine Tardin
SCIENCEDIRECT
-

摘要

>Protein-induced DNA bridging and looping is a common mechanism for various and essential processes in bacterial chromosomes. This mechanism is preserved despite the very different bacterial conditions and their expected influence on the thermodynamic and kinetic characteristics of the bridge formation and stability. Over the last two decades, single-molecule techniques carried out on in vitro DNA systems have yielded valuable results which, in combination with theoretical works, have clarified the effects of different parameters of nucleoprotein complexes on the protein-induced DNA bridging and looping process. In this review, I will outline the features that can be measured for such processes with various single-molecule techniques in use in the field. I will then describe both the experimental results and the theoretical models that illuminate the contribution of the DNA molecule itself as well as that of the bridging proteins in the DNA looping mechanism at play in the nucleoid of E. coli.

关键词

Persistence lengthFlexibilityTensionTorsionSingle-moleculeTPM