Beam energy dependence of the linear and mode-coupled flow harmonics in Au plus Au collisions

作者:Aboona, B. E.; Adam, J.; Adams, J. R.; Agakishiev, G.; Aggarwal, I.; Aggarwal, M. M.; Ahammed, Z.; Aitbaev, A.; Alekseev, I.; Anderson, D. M.; Aparin, A.; Atchison, J.; Averichev, G. S.; Bairathi., V.; Baker, W.; Cap, J. G. Ball; Barish, K.; Bhagat, P.; Bhasin, A.; Bhatta, S.; Bordyuzhin., I. G.; Brandenburg, J. D.; Brandin, A. V.; Cai, X. Z.; Caines, H.; Sanchez, M. Calderon de la Barca; Cebra, D.; Ceska, J.; Chakaberia, I.; Chan, B. K.; Chang, Z.; Chen, D.; Chen, J.; Chen, J. H.; Chen, Z.
来源:Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics , 2023, 839: 137755.
DOI:10.1016/j.physletb.2023.137755

摘要

The linear and mode-coupled contributions to higher-order anisotropic flow are presented for Au+Au collisions at root sNN = 27, 39, 54.4, and 200 GeV and compared to similar measurements for Pb+Pb collisions at the Large Hadron Collider (LHC). The coefficients and the flow harmonics' correlations, which characterize the linear and mode-coupled response to the lower-order anisotropies, indicate a beam energy dependence consistent with an influence from the specific shear viscosity (eta/s). In contrast, the dimensionless coefficients, mode-coupled response coefficients, and normalized symmetric cumulants are approximately beam-energy independent, consistent with a significant role from initial-state effects. These measurements could provide unique supplemental constraints to (i) distinguish between different initial-state models and (ii) delineate the temperature (T ) and baryon chemical potential (mu B) dependence of the specific shear viscosity eta s (T, mu B).