Summary

针对航空发动机气路性能衰退主要是由时间累积效应造成的这一问题,为反映航空发动机气路性能参数时间序列中实际存在的时间累积效应,以预测航空发动机气路性能衰退规律,本文从泛函分析的角度出发,提出了一种支持过程向量机模型。并建立了基于支持过程向量机的时间序列预测模型,且以Logistic混沌时间序列预测为例验证了该预测模型的有效性。在此基础上建立了基于支持过程向量机的航空发动机排气温度预测模型,并采用遗传算法进行模型参数的优化选择。通过航空发动机排气温度预测实际应用案例对提出的模型进行了验证,实验结果表明:支持过程向量机预测结果的平均相对误差为2.81%,优于传统支持向量机的预测结果。

  • Institution
    哈尔滨工业大学; 哈尔滨理工大学