摘要

The fractional differential algorithm has a good effect on extracting image textures, but it is usually necessary to select an appropriate fractional differential order for textures of different scales, so we propose a novel approach for haptic texture rendering of two-dimensional (2D) images by using an adaptive fractional differential method. According to the fractional differential operator defined by the Grunvald-Letnikov derivative (G-L) and combined with the characteristics of human vision, we propose an adaptive fractional differential method based on the composite sub-band gradient vector of the sub-image obtained by wavelet decomposition of the image texture. We apply these extraction results to the haptic display system to reconstruct the three-dimensional (3D) texture force filed to render the texture surface of two-dimensional (2D) images. Based on this approach, we carry out the quantitative analysis of the haptic texture rendering of 2D images by using the multi-scale structural similarity (MS-SSIM) and image information entropy. Experimental results show that this method can extract the texture features well and achieve the best texture force file for 2D images.

全文