摘要
This study presents a model to accurately describe the nonlinear deformation pattern of rock creep damage process by incorporating energy principles. The model captures the accelerated creep deformation pattern by considering the relationship between time and creep parameters at each stage of rock creep. A nonlinear creep model based on energy conservation is developed by integrating the time-dependent creep parameters into the model. The identified parameters of the model are compared to validate its feasibility and accuracy. The correlation coefficient between the fitted curve and the test curve exceeds 0.90, confirming the validity of the nonlinear creep energy damage model. Utilizing the energy conservation law, the model effectively characterizes the damage evolution throughout the whole creep process and accurately represents the nonlinear deformation behavior during the accelerated creep stage of rocks. Compared with the Nishihara model, the model presented in this study demonstrates a better fit with the test curve, serving as a novel approach for creep modeling.
-
单位中国科学院; 桂林理工大学