Summary
A simple method for preparation of adenosine triphosphate (ATP) surface-functionalized selenium nanoparticles (SeNPs@ATP) with enhanced cell permeabilization and anticancer activity has been demonstrated in the study reported in this article. Spherical SeNPs were decorated with ATP by strong adsorption through an Se-N bond, leading to the highly stable structure of the conjugates. ATP surface decoration significantly enhanced the cellular uptake and anticancer activity of SeNPs. Induction of apoptosis in HepG2 human hepatocellular carcinoma cells by SeNPs@ATP was evidenced by accumulation of the sub-G1 cell population, phosphatidylserine exposure, DNA fragmentation, PARP cleavage and caspase activation. Further studies found that SeNPs@ATP treatment triggered the depletion of mitochondrial membrane potential and reactive oxygen species (ROS) overproduction. Our results demonstrate that the use of ATP as a surface decorator of SeNPs is a novel strategy to achieve anticancer synergy. SeNPs@ATP may be a candidate for further evaluation as a chemotherapeutic agent for human cancers.
-
InstitutionJinan University; University of Jinan