摘要

Exploring strategies to control the crystallization and modulate interfacial properties for high-quality perovskite film on industry-relevant textured crystalline silicon solar cells is highly valued in the perovskite/silicon tandem photovoltaics community. The formation of a 2D/3D perovskite heterojunction is widely employed to passivate defects and suppress ion migration in the film surface of perovskite solar cells. However, realizing solution-processed heterostructures at the buried interface faces solvent incompatibilities with the challenge of underlying-layer disruption, and texture incompatibilities with the challenge of uneven coverage. Here, a hybrid two-step deposition method is used to prepare robust 2D perovskites with cross-linkable ligands underneath the 3D perovskite. This structurally coherent interlayer benefits by way of preferred crystal growth of strain-free and uniform upper perovskite, inhibits interfacial defect-induced instability and recombination, and promotes charge-carrier extraction with ideal energy-level alignment. The broad applicability of the bottom-contact heterostructure for different textured substrates with conformal coverage and various precursor solutions with intact properties free of erosion are demonstrated. With this buried interface engineering strategy, the resulting perovskite/silicon tandem cells, based on industrially textured Czochralski (CZ) silicon, achieve a certified efficiency of 28.4% (1.0 cm2), while retaining 89% of the initial PCE after over 1000 h operation. @@@ Using a hybrid two-step deposition method, prepared robust 2D perovskites with cross-linkable ligands underneath 3D perovskite enable the formation of a conformal 2D/3D heterostructure at the buried interface. Owing to the influence of the heterojunction on crystallization and interfacial modulation, perovskite-silicon tandem solar cells based on industrially fully textured silicon achieve an efficiency of 29.8% (certified 28.4%).image

  • 单位
    中国科学院; 南昌大学; 武汉理工大学