摘要
Research on visible-light photocatalysts of metal nanoparticles (NPs) has focused on increasing the reactant conversion by light-excited charges (electrons and positively charged holes). However, light irradiation can accelerate catalysis by other mechanisms. Here, we report that 650 nm wavelength irradiation of 0.75 W.cm(-2) significantly increases nitrile yield of ammoxidation of primary aromatic alcohols with an ammonium salt over supported Pd NPs at 80 degrees C in air. We found that the desorption of the nitrile product from the catalyst is the rate-determining step; the irradiation promotes not only alcohol oxidation and subsequent aldehyde cyanation over the Pd NPs but also the nitrile desorption selectively via resonance energy transfer to achieve a high nitrile yield. This new mechanism provides a knob for the exquisite control of catalytic reaction pathways for ecofriendly synthesis.