摘要
叶面积作为植物光合作用的重要指标,是研究作物及林木生产力的基础。采用L-M算法和贝叶斯规则相结合的网络训练模式,以毛竹叶面积为研究对象,综合优化其人工神经网络结构,构建最优的叶面积预测模型。研究结果显示,模型的最佳预测变量为叶片宽度和叶片长度变量组合,而增加叶片形状指数未提高叶面积预测模型精度;所建神经网络模型性能好、预测精度高,决定系数达0.992,平均相对预测误差为4.28%,可以准确估测毛竹叶面积。
-
单位北京林业大学; 福建农林大学