ScholarMate
客服热线:400-1616-289

BILSTM-Based Deep Neural Network for Rock-Mass Classification Prediction Using Depth-Sequence MWD Data: A Case Study of a Tunnel in Yunnan, China

Cheng, Xu; Tang, Hua*; Wu, Zhenjun; Liang, Dongcai; Xie, Yachen
Science Citation Index Expanded
中国科学院研究生院; 中国科学院

摘要

Measurement while drilling (MWD) data reflect the drilling rig-rock mass interaction; they are crucial for accurately classifying the rock mass ahead of the tunnel face. Although machine-learning methods can learn the relationship between MWD data and rock mechanics parameters to support rock classification, most current models do not consider the impact of the continuous drilling-sequence process, thereby leading to rock-classification errors, while small and unbalanced field datasets result in poor model performance. We propose a novel deep neural network model based on Bi-directional Long Short-Term Memory (BILSTM) to extract information-related sequences in MWD data and improve the accuracy of the rock-mass classification. Two optimization modules were designed to improve the model's generalization performance. Stratified K-fold cross-validation was used for model optimization in small and unbalanced datasets. Model validation is based on the MWD dataset of a highway tunnel in Yunnan, China. Multiple metrics show that the prediction ability of the network is significantly better than those of a multilayer perceptron (MLP) and a support-vector machine (SVM), while the model exhibits an improved generalization performance. The accuracy of the network can reach 90%, which is 13% and 15% higher than the MLP and SVM, respectively.

关键词

rock mass classification measurement while drilling deep neural networks Bi-directional Long Short-Term Memory