摘要
Hypoxic brain damage (HIBD) usually induces chronic neurological disorder and even acute death, but effective neuroprotective strategy is still limited. Herein, we performed this study to clarify the mech-anism of mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) containing microRNA-93 (miR-93) in influencing this damage via regulation of the histone deacetylase 4 (HDAC4)/B-cell lymphoma-2 (Bcl-2) axis. Ini-tially, differentially expressed Bcl-2 was identified in middle cerebral artery occlusion (MCAO), and the upstream regulatory miR-93 and its potential target HDAC4 were also predicted through bioinformatics analysis. HIBD was modeled in vitro by exposing hippocampal neurons to oxygen-glucose deprivation (OGD) and in vivo by MCAO in rats. EVs were isolated from the bone marrow MSCs of well-grown rats. Our experimental data validated that HDAC4 was highly expressed while miR-93 and Bcl-2 were poorly expressed in MCAO rats. Furthermore, HDAC4 overexpression, through inhibiting Bcl-2 via deacetylation, promoted the infarct volume and pathological changes in hippocampal tissues and neuron apoptosis, and impaired neurobehavioral ability of MCAO rats. Of note, miR-93 was found to target HDAC4. Importantly, MSC-derived EVs overexpressing miR-93 suppressed HDAC4 expression and subsequently impeded the apoptosis of OGD-exposed hippocampal neurons in vitro, and also ameliorated HIBD in vivo. Taken together, miR-93 delivered by MSC-derived EVs can ameliorate HIBD by suppressing hippocampal neuron apoptosis through targeting the HDAC4/Bcl-2 axis, a finding which may be of great significance in the treatment of HIBD.
-
单位哈尔滨医科大学