基于深度学习的异噪声下手写汉字识别的研究
中国知网
太原科技大学
摘要
针对手写汉字字符图像识别率受随机噪声影响的问题,提出了一种基于深度学习与抑制噪声相结合的新算法。该算法主要应用于拥有随机噪声的手写汉字字符图片,是其在Python环境下,利用Caffe平台建立抑制噪声与卷积神经网络相结合的模型,通过模型移除噪声并正确识别手写汉字。另外,新算法去除噪声的同时对字符形态没有改变,保留了汉字的原始信息。结果在其两种不同的噪声(高斯噪声和椒盐噪声)下,逐渐提升其噪声强度,进行多次实验,同时与其他方法对比,最终得到其平均识别率为97. 05%。实验结果表明,该模型和算法具有效率快、识别能力强的优点。
关键词
深度学习 噪声移除 卷积神经网络 算法环境 手写汉字识别 deep learning noise removal convolutional neural network algorithmic environment handwritten Chinese character recognition
