Removal of tetracycline from an aqueous solution using manganese dioxide modified biochar derived from Chinese herbal medicine residues
摘要
Biochar (BC) derived from Chinese herbal medicine residues has been investigated for its performance as a potential adsorbent in tetracycline (TC) removal. In the present study, a chemical co-precipitation method was carried out to prepare manganese dioxide modified biochar (Mn-BC) to increase its sorption capacity. The properties of the modified biochar were characterized for further enhancing TC removal from an aqueous solution. Mn-BC was successfully synthesized and resulted in a much higher specific surface area, total pore volume and pore diameter. The sorption kinetics of TC on Mn-BC was described by the pseudo-second-order model. The sorption data of Mn-BC were fitted by Langmuir and Freundlich models. The study findings revealed a maximum adsorption capacity of Mn-BC (1:10) to TC was up to 131.49 mg/g. The adsorption process was endothermic and spontaneous. The degradation of TC was further enhanced by MnO2 acting as an oxidizer on Mn-BC. Overall, the modified biochar derived from Chinese herbal medicine residues is a superior alternative for the removal of TC from an aqueous solution.
