摘要

Partially occluded faces are very common in automatic face recognition (FR) in the real world. We explore the problem of FR with occlusion by embedding Image Gradient Orientations (IGO) into robust error coding. The existing works usually put stress on the error distribution in the non-occluded region but neglect the one in the occluded region due to its unpredictability incurred by irregular occlusion. However, in the IGO domain, the error distribution in the occluded region can be built simply and elegantly by a uniform distribution in the interval [- , ), and the one in the occluded region can be well built by a weight-conditional Gaussian distribution. By incorporating the two error distributions and a Markov random field for the priori distribution of the occlusion support, we propose a joint probabilistic generative model for a novel IGO-embedded Structural Error Coding (IGO-SEC) model. Two methods, a new reconstruction method and a new robust structural error metric, are further presented to boost the performance of IGO-SEC. Extensive experiments on 8 popular robust FR methods and 4 benchmark face databases demonstrate the effectiveness and robustness of IGO-SEC in dealing with facial occlusion and occlusion-like variations.

  • 单位
    浙江工业大学