摘要
目的传统相关滤波目标跟踪算法存在两个问题,其一,使用循环移位产生的虚假负样本训练分类器,导致分类器分类能力受到限制;其二,当目标被严重遮挡时,由遮挡引起的一些不正确的样本(预测的目标图像)用于更新分类器,随着遮挡时间的增加,分类器将包含较多噪声信息并逐渐失去判别力,使得跟踪失败。针对上述问题,提出一种基于感知模型的长期目标跟踪算法,通过引入背景感知策略解决传统相关滤波器缺乏真实负样本问题,通过引入遮挡感知策略来有效跟踪被遮挡的目标。方法首先,所提算法通过扩大采样区域,增加所产生训练样本数量,并引入裁剪矩阵,裁取移位后的样本以获得完整有效的样本,同时克服了由循环移位产生样本导致的边界效应问题;然...
-
单位物理与电子学院; 中南大学; 湖南师范大学