摘要
By adjusting the type and proportion of doping elements in the g-C3N4-based photocatalyst, the internal electric field (IEF) strength of the semiconductor can be regulated. This can effectively enhance the driving force of charge separation in the photocatalytic process. It is found that the introduction of appropriate concentration of Bi and S into the skeleton structure of g-C3N4 can achieve efficient degradation of tetracycline (TC) and other pollutants in the liquid environment and excellent photocatalytic H-2 evolution performance(1139 mu mol.L-1.h(-1)). Since the prepared samples have similar crystal structures, the relative strength of IEF can be calculated. It can be used as the basis for adjusting the IEF strength of g-C3N4-based semiconductor by element doping. In addition, the Bi and S co-doped g-C3N4 samples after solvothermal reflux show good chemical stability and can reduce the nanostructure defects caused by co-doping of heteroatoms, thus it provides a novel solution for the construction of g-C3N4-based dual-function photocatalyst with high activity and stability.
-
单位南昌航空大学; 电子科技大学