摘要

针对纳米级Cu薄膜电阻率,基于BP神经网络模型,本文提出了一种反馈式神经网络优化方法,利用蒙特卡洛分析方法对隐含层神经元数进行了优化,并基于随机样本集进行网络训练,建立了反馈式BP神经网络的电阻率预测模型。通过100组学习样本训练后的神经网络模型,与50组测试样本进行测试,结果表明,所提方法能够实现电学参数值与金属Cu电阻率较好的非线性映射,预测结果与Marom模型相比较,最大误差不超过4%,并且训练范围外的预测结果与测试样本吻合较好,验证了该方法的精度和泛化能力,为超薄金属互连电阻率模型估算提供了重要参考。

  • 单位
    西安电子科技大学