Efficient treatment of actual glyphosate wastewater via non-radical Fenton-like oxidation

作者:Jin, Lei; Huang, Yingping; Liu, Honglin; Ye, Liqun; Liu, Xiang*; Huang, Di*
来源:Journal of Hazardous Materials, 2024, 463: 132904.
DOI:10.1016/j.jhazmat.2023.132904

摘要

Compared to radical oxidative pathway, recent research revealed that non-radical oxidative pathway has higher selectivity, higher adaptability and lower oxidant requirement. In this work, we have designed and synthesized Cu2O/Cu nanowires (CuNWs), by pyrolysis of copper chloride and urea, to selectively generate high-valent copper (CuIII) upon H2O2 activation for the efficient treatment of actual glyphosate wastewater. The detailed characterizations confirmed that CuNWs nanocomposite was comprised of Cu0 and Cu2O, which possessed a nanowire-shaped structure. The electron paramagnetic resonance (EPR) analysis, in situ Raman spectra, chro-noamperometry and liner sweep voltammetry (LSV) verified CuIII, which mainly contributed to glyphosate degradation, was selectively generated from CuNWs/H2O2 system. In particular, CuI is mainly oxidized by H2O2 into CuIII via dual-electron transfer, rather than simultaneously releasing OH center dot via single electron transfer. More importantly, CuNWs/H2O2 system exhibited the excellent potential in the efficient treatment of actual glyphosate wastewater, with 96.6% degradation efficiency and chemical oxygen demand (COD) dropped by 30%. This novel knowledge gained in the work helps to apply CuNWs into heterogeneous Fenton-like reaction for environmental remediation and gives new insights into non-radical pathway in H2O2 activation.

全文